

Final Report

CONVERSION OF AERIAL to UNDERGROUND UTILITIES ANALYSIS

Town of Palm Beach Palm Beach, FL

November 2006

Town of Palm Beach Palm Beach, Florida

CONVERSION OF AERIAL TO UNDERGROUND UTILITIES ANALYSIS

I hereby certify that this Conversion of Aerial to Underground Utilities Analysis was prepared by me or under my direct supervision and that we are duly registered professional engineers under the laws of the State of Florida.

Paul Anthony Hanson, P.E.
Project Manager
R.W. Beck, Inc.
400 Professional Park Drive - Suite 100
Goodlettsville, Tennessee 37072
Professional Engineer NO. 55932

Date: 11-01-06

R.W. Beck, Inc. 1001 Fourth Ave. – Suite 2500 Seattle, Washington 98151-1004 Certificate of Authorization NO. 7525

1.

G:\5776\05-01336\Drawings\Certification.doc

R. W. BECK, INC. CONVERSION OF AERIAL to UNDERGROUND UTILITIES ANALYSIS Town of Palm Beach

Table of Contents

Table of Contents List of Tables List of Figures

EXECUTIVE SUMMARY

Section 1 EXISTING PLANT SUMMARY

1.1	Customer Base for Utility Services	. 1-1
1.2	Existing Overhead Plant - Comcast	. 1-1
1.3	Existing Overhead Plant - BellSouth	. 1-2
1.4	Existing Overhead Plant - FPL	. 1-2

Section 2 COST DRIVERS AND ASSUMPTIONS

2.1	Introduction	
2.2	Project Management	
2.3	Legal	
2.4	Easements	
2.5	Conduit	
2.6	Number of Conduits	
2.7	Utilization of City Resources	
2.8	Telecommunications Electronics	
2.9	Cable (Coax, Copper and Fiber Optic)	
2.10	No Betterment	
2.11	Construction Methods	
2.12	Phased Implementation	
2.13	Damage to Foliage	
2.14	Joint Trenching	
2.15	Construction Period	
2.16	Construction Permits	

Section 3 ELECTRIC SYSTEM COST ESTIMATE

3.1 Electric System Cost Estimate	3-	-]	Ĺ
-----------------------------------	----	----	---

3.2	Storm-Hardened Overhead Construction Cost	. 3-	-3	
-----	---	------	----	--

Section 4 BELLSOUTH COST ESTIMATE

4.1	Introduction	4-1
4.2	BellSouth Cost Estimate – Main Lines	4-1
4.3	BellSouth Cost Estimate – Laterals	4-1
4.4	BellSouth Cost Estimate – Service Drops	4-2
4.5	BellSouth Cost Estimate – Summary	4-2

Section 5 COMCAST COST ESTIMATE

Introduction	1
Comcast Cost Estimate – Hard Line Plant	.1
Comcast Cost Estimate – Joint Trenching Credits to Hard Line	
Plant	1
Comcast Cost Estimate – Soft Line Plant	2
Comcast Cost Estimate – Summary	2
	Introduction Comcast Cost Estimate – Hard Line Plant Comcast Cost Estimate – Joint Trenching Credits to Hard Line Plant Comcast Cost Estimate – Soft Line Plant Comcast Cost Estimate – Summary

APPENDICES

Appendix A – Detailed Cost Spreadsheet - Electric
Appendix B - Detailed Cost Spreadsheet - Comcast
Appendix C – Detailed Cost Spreadsheet BellSouth

This report has been prepared for the use of the client for the specific purposes identified in the report. The conclusions, observations and recommendations contained herein attributed to R. W. Beck, Inc. (R. W. Beck) constitute the opinions of R. W. Beck. To the extent that statements, information and opinions provided by the client or others have been used in the preparation of this report, R. W. Beck has relied upon the same to be accurate, and for which no assurances are intended and no representations or warranties are made. R. W. Beck makes no certification and gives no assurances except as explicitly set forth in this report.

Copyright 2006, R. W. Beck, Inc. All rights reserved.

List of Tables

Table ES-1 Underground Conversion Cost Summary	2
Table ES-2 Cost Comparison	3
Table 1-1 Customer Base	1-1
Table 1-2 Comcast's Customer Base	1-2
Table 1-3 BellSouth's Customer Base	1-2
Table 1-4 FPL Electrical System Characteristics	1-3
Table 3-1 Estimated Replacement Cost of Overhead Electric Facilities	3-3
Table 3-2 Estimated Component	3-3
Table 4-1 BellSouth Conversion Cost Estimate Summary	4-3
Table 5-1 Conversion Costs for Comcast's Soft Line Plant	5-2
Table 5-2 Comcast's Conversion Cost Estimate Summary	5-3

Underground Conversion Cost Summary			
	Total Cost (w/o Joint Trenching)	Total Cost (with Joint Trenching)	
FPL (CIAC)	\$49,878,300	\$51,336,400	
BellSouth	\$6,001,000	\$5,400,000	
Comcast	\$3,970,800	\$3,578,400	
Total	\$59,850,100	\$60,314,800	

Table ES-1
Underground Conversion Cost Summary

The results of the options appear to be counter intuitive, since the joint use trench cost is higher than the separate trench option. However the justification or explanation of the relationship is:

- The joint trench option assumes a pathway will be provided on all backbone and tap circuit routes for ultimate use and conversion. The actual footage of the existing underground telephone plan is about 60% of the proposed route. Therefore there is excess conduit included in the joint trenching option.
- The installation method of the joint trench would utilize a different installed depth than the separated routes.
- The joint trench allowance stated by the cable company seems to understate the benefit.
- The completed system would provide a more efficient use of the space or "rightof-way".
- The public should be exposed to less construction time with the joint trench approach.

The cost estimate also includes expenses which are the responsibility of the Town, but would not be direct payments to the Utilities. Project Management and owner's expenses have been included and are approximately \$5.9 million of the total estimate for the joint trenching option. As discussed in the report, these items are necessary to coordinate a complex project and protect the Towns interest.

Details of the cost estimate are shown in Section 3.

Introduction

The Town of Palm Beach Florida (Town) has been evaluating the potential benefits of a conversion of all overhead electrical and communications facilities within the city limits to underground, due to aesthetics and issues concerning reliability. The affected utilities would be Florida Power and Light (FPL), BellSouth and Comcast (collectively as the Utilities). Several studies have evaluated the related impacts and cost of such projects. These studies have been performed by internal as well as external entities. The recent hurricanes in Florida have further motivated such analyses, which are now a state-wide subject with discussions by the local utilities as well as the Public Service Commission. The Town is currently slated to have a referendum vote to determine citizens' interest and desire to initiate a requirement to underground all utilities within the city limits.

The Town has requested R. W. Beck, Inc. (R. W. Beck) to perform a high level review of the current cost estimates the Town is utilizing in its analysis (Project). This review evaluates the electric, telecommunications and cable television utilities (Utilities) in the area.

Findings

The analysis contained in this report finds that the costs of converting the existing overhead networks to underground of the Utilities in Palm Beach to be roughly \$60.3 million. These costs may be reduced by carefully coordinating the FPL conversion and replacement of existing telephone and Comcast overhead cable facilities. The cost was developed with two construction scenarios; the first was based on each utility performing individual trenching or boring functions and the second option is based on one entity performing the trenching or boring and conduit installation for the main line facilities. These costs are summarized in the following table for each Utility, with and without joint trenching:

This is not Palm Beach's first attempt to obtain an estimate of the cost of converting its overhead Utilities to underground. Prior attempts have produced different results, which are likely based on different assumptions. The following table summarizes cost estimates to date:

	Cost	Notes
Palm Beach	\$62,000,000	Based on extrapolation from pilot project cost
JLSD	\$53,000,000	2004 Estimate- does not include FPL CIAC formula
R. W. Beck	\$60,314,800	Includes CIAC formula, Telecomm, Project Management and owner's expenses
FPL (Electric Only)	\$32,000,000	Does not include Telecomm

Table ES-2 Cost Comparison

Additionally, the decision and ultimate negotiations with the Utilities should reflect the current regulation amendments under consideration. Current potential impact issues include:

- FPL's 25% allowance for conversion projects to municipals. This allowance is a product of the state-wide initiative to improve reliability to the Florida electric Grid. FPL is proposing this credit to foster a joint effort of the municipals and utility to improve the service to the area. Based on the estimate enclosed this could amount to approximately \$12 Million reduction in the overall cost of the project.
- FPL's current decision to change the design standards for distribution facilities. FPL is proposing designing its new distribution facilities to meet the NESC extreme wind criteria. If applied to the overhead credit or the conversion formula, the total cost to the Town should be reduced. Based on the enclosed estimate this could reduce the overall cost of the project by \$950,650.

Evaluation Material

The analysis conducted in this Project included the following data sources:

- Site visit to observe the condition, location and type of overhead facilities
- Local interview with the Town of Palm Beach's Deputy Town Manager
- Previous studies performed by JLSD Consulting Engineers
- FPL system maps provided August 2004
- FPL cost estimate for conversion dated December 2005
- Site interviews with the Bellsouth representatives
- Site interviews with Comcast representatives

- Census data from the Town records
- Additional detail of plant quantities from FPL
- Current PSC regulations
- FPL tariffs for underground conversion

General Assumptions

Due to the high-level nature of this assessment, a number of important assumptions are required. These assumptions are noted below.

- Overhead to underground conversion costs are limited to the primary providers of electric power and telecommunications services (e.g. FPL, BellSouth and Comcast). Wireless service providers, such as cellular telephony, are not included.
- While the system characteristics of future networks might be significantly different from the status quo, cost estimates strictly focus on replacing existing networks with their identical underground counterparts. Any incremental costs related to improvements in system characteristics (e.g. replacing overhead copper wire with underground fiber optic cable) would be the responsibility of that utility.
- This report is founded on high level cost analyses and is not intended to be used for budgetary purposes.
- This report does not include any in-depth system design considerations.
- The information contained in this report is based on two brief field inspections of the Town of Palm Beach, Florida, conversations with staff at FPL, Comcast and BellSouth and R. W. Beck's prior experience in related matters.
- Facilities would be installed inside the existing Right-of-Way to prevent private easements. Where this concept is not possible, private easement must be obtained; cost for easement acquisition is not included. This would require the Town to agree to "keep FPL whole" for future road work.
- Cost estimates are prepared based on typical industry standard practices and costs. Individual company overhead allocation will vary greatly and could significantly impact the cost. Cost savings may exist if the Town installs all equipment and donates installed facilities to FPL.
- Service entrances for a majority of the homes are already underground due to the existing town ordinance; therefore, no cost has been included for these private facility modifications. Cost has been included for the replacement of the underground FPL conductors to reflect the new location of the electric facilities.
- Electronic or node equipment for telephone and cable facilities are usually located at grade level in pad mounted cabinets, therefore the telephone and cable conversion cost assumes these will be re-used.

- Underground electric equipment type and installation practices were based on FPL standard design practices. Once design begins, other practices should be considered to increase reliability and storm responses. Items to consider would be subsurface style switchgear, concrete encased duct bank, and vacuum or SF₆ insulated switchgear. These items would impact overall cost and may improve reliability to the Town.
- The basic methodology of installation was assumed to be utilizing open trenching methods. Directional boring could be utilized to minimize the disturbances to the public. The cost impact would be negligible if a reduction in the number of spares was implemented. The Utilities have expressed a desire to utilize directional boring where practical.

Section 1 EXISTING PLANT SUMMARY

1.1 Customer Base for Utility Services

One attribute that directly impacts the cost of underground services is Palm Beach's total customer base for utility services and the segment which is currently served by overhead systems. The overhead systems located in the Town of Palm Beach are primarily owned by FPL, Comcast and BellSouth. Adelphia previously owned some local assets, but these were acquired by Comcast during 2006. Wireless telephony facilities, such as cellular towers, are also expected to be located within Palm Beach, but are assumed to be outside of the scope of this analysis due to their limited visual impacts. The Palm Beach market is summarized in the following table.

Customer Base		
Market Segment Number of Units		
Single Family Housing	2,455	
Condominium Buildings	116	
Apartment Buildings	66	
Business/Commercial	214	
Total	2,851	

Table 1-1

1.2 Existing Overhead Plant - Comcast

Comcast's overhead plant in the Town is comprised of backbone fiber optic and coaxial lines (hard line plant) and service drops which connect the backbone system to customers (soft line plant). In addition, Comcast owns considerable head-end facilities, but these are not located in the Town. Verbal information provided by Comcast indicates that there is 37.21 miles of overhead hard line.

In contrast, Comcast does not have an estimate for the length of its soft line plant, but did indicate that individual service drops typically range from 100 to 150 feet (125 feet is average). This figure can easily be translated into an estimate for total soft line plant, if the number of Comcast customers were known. Unfortunately, Comcast was not able to provide any customer data; however, Comcast did provide some verbal estimates for its percentage of overhead customers by class, as shown in the following table. In the absence of actual customer counts, R. W. Beck applied its experience in such matters and finds that typical penetration rates for household cable television in Palm Beach could be 85%. Similarly, penetration rates for businesses range between

Comcast's Customer Base								
Market	Total Number	Overhead Customers	Penetration Rate (Average)	Overhead Customers				
Residential	2,455	95%	85%	1,749				
Apartments	66	10%	85%	5				
Condominiums	116	10%	85%	9				
Businesses	214	90%	22.5%	43				
Total	2,851			1,806				

10% and 35%. Collectively, these data lay the foundation for estimating overhead customers, which are summarized below.

Table 1-2

Differences between the forecasted and actual number of overhead customers will directly affect the estimated number of required overhead conversions and resultant costs.

1.3 Existing Overhead Plant - BellSouth

Verbal communications with BellSouth indicated that it did not readily know its number of customers or length of its overhead networks. Consequently, this report includes several high-level assumptions in estimating the cost of system conversions.

The total number of accounts appears to be greatly different from the statistics provided by the Town. This has been attributed to the number of apartment and condo units per parcel and the number of individual accounts located on a single residential parcel.

Table 1-3 BellSouth's Customer Base									
Market	Total Number	Overhead Customers	Penetration Rate (Average)	Overhead Customers					
Residential	2,455	95%	100%	2,332					
Apartments	66	10%	100%	7					
Condominiums	116	10%	100%	12					
Businesses	214	90%	100%	193					
Total	2,851			2,544					

1.4 Existing Overhead Plant - FPL

The existing electrical plant consists of mainly overhead 13kV construction. The Town is served by 12 inter-coastal crossings, which rise to an overhead configuration

at the first available location on the island. The majority of the backbone system is located along the roadside. The exact location in relation to private versus public property is unknown. The majority of the radial primary taps serving the residences in the town are located in a rear lot configuration. The service drops to a majority of the homes are currently underground due to the current Town regulation requiring new services be located underground.

FPL provided a summary of the existing electrical facilities serving the Town. These numbers will be utilized to develop an underground cost as well as an overhead replacement cost. Quantities provided by FPL are as follows:

	Total
Number of existing electric meters	9,400 (Residential – 8,000) (Non-Residential – 1,400)
Number of Poles	1,970
Number of miles of OVH backbone lines	26
Number of miles of OVH tap lines	13
Number of miles of UG backbone lines	9
Number of miles of UG tap lines	24
Number of overhead transformers	800
Number of underground transformers	220

Table 1-4FPL Electrical System Characteristics

Section 2 COST DRIVERS AND ASSUMPTIONS

2.1 Introduction

There are a number of drivers that could have a significant impact on forecasting the cost of converting overhead utility systems to underground. Unfortunately, some of these drivers are relatively uncertain and cannot be fully explored until the design or detailed cost estimating process begins. In light of such issues, this section addresses the drivers that could significantly affect the high-level underground conversion costs that are presented here.

2.2 Project Management

An undertaking of this magnitude will require a substantial project management effort. A Project Manager would represent the Town, serve as a single point of contact between property owners and the construction effort, and requires a background in electric power and telecommunications systems. The Project Manager would be responsible for ensuring that the Town's concerns are met (e.g. minimize impacts to constituents, permitting and construction regulations). Additional responsibilities would include:

- Coordinating schedules between utilities (especially required for joint trenching) to avoid redundant street digs
- Coordinating effected roads to minimize road closures, delays and impacts to local constituents
- Reviewing and reporting on forecasted and actual budgets
- Conducting construction monitoring
- Coordinating the Town's internal permitting and construction staff

Costs related to project management have been estimated at 8% and are included in this analysis.

2.3 Legal

Construction may result in unfortunate impacts such as damage to property. It is not known whether such costs would be significant. The potential costs can not be forecasted and have not been included in this analysis.

2.4 Easements

Verbal feedback from the Utilities indicates that they are currently assuming that the Town will perfect all existing easements, as required, and obtain all newly required easements to provide necessary access for the Utilities. Consequently, the cost of obtaining easements has not been included in this estimate.

2.5 Conduit

The Utilities have not currently made a final determination whether its cable plant (e.g. coax, copper and fiber optic) should be directly buried or placed in conduit. Preliminary feedback indicates a preference for conduit and the utilities are assuming that such expense would be borne by the Town. In order to minimize the duration and number of construction activities in an area, the current preferred plan is to have one entity install all conduits for the project. The enclosed cost estimate reflects one party installing all conduits and individual installations.

2.6 Number of Conduits

The Town will need to assess the number of conduits to be placed in the backbone system. One option is to install only the minimum number of conduits that would be required to meet FPL's, BellSouth's and Comcast's immediate needs. However, an alternative approach would be to plan for long range growth and alternative competitive service providers to reduce the need for future street digs. This latter approach would likely install additional conduit at a higher cost. The estimate includes a prudent number of spares since the location and number of spares is impossible to forecast and would significantly impact the cost of the project.

2.7 Utilization of City Resources

The project, as currently defined, will require a significant amount of the Town's resources due to the coordination of road crossings, Right-of-Way definition, and underground facility locates.

These efforts would be in addition to the design and project management services defined earlier; therefore the estimate includes a 3% allowance for internal labor expenses.

2.8 Telecommunications Electronics

Since BellSouth and Comcast have not yet performed a detailed design of their underground systems, it is not yet feasible to identify or estimate the cost of required electronic equipment. It is assumed the existing equipment could be re-implemented since a majority of the equipment is already pad mounted at strategic locations

2.9 Cable (Coax, Copper and Fiber Optic)

There have been many significant technological advances in the field of telecommunications since the original Palm Beach networks were installed. One industry-wide change has been the replacement of traditional copper wire with fiber optic cable. Fiber optic cables are capable of carrying a great deal more traffic than their copper based counterparts.

Today, it appears that much of BellSouth's overhead and underground networks are comprised of copper circuits. If ordered to convert its overhead plant, BellSouth might wish to replace copper circuits with fiber optic cables.

Therefore a new underground cable plant is expected to be comprised of coax and fiber optics. Historically, voice based systems have extensively used copper wire for such projects. However, BellSouth has verbally indicated that it may replace much of its existing copper plant with fiber optics. This approach is commonly referred to as fiber to the curb (FTTC). FTTC has the capability to support significantly more and higher quality services than copper. For example, data or Internet transmission over copper wire is commonly limited to 640 Kbps for digital subscriber lines (DSL) and 1.544 Mbps for T1 lines. In contrast, FTTC is potentially suitable to support bandwidths that are 100 times greater. The basic impact is a potential increased level of service to the general population.

Even though this upgrade would provide an upgraded service to the City's population, the cost for the incremental capacity or capability of the new facilities should be the responsibility of the Utility and be deemed a betterment. See discussions below regarding betterment allowances.

2.10 No Betterment

The assessment conducted in this report assumes that the utilities would be permitted to only replace existing overhead assets with like underground ones. This stipulation is predicated on the concern that the Town of Palm Beach should not subsidize system improvements. However, it must be noted that telecommunications technologies and capabilities have improved significantly over time and it is possible that BellSouth and Comcast might wish to install significantly different infrastructure. For example, BellSouth's existing copper backbone lines might be replaced with fiber optic cable. Therefore allowances should be negotiated for perceived betterment.

2.11 Construction Methods

The Utilities face choices between directly burying cable or placing it in conduit, types of conduit, and boring versus trenching. Each choice is accompanied by several advantages and disadvantages. Direct bury is generally less expensive and faster to install while conduit offers more system security at a higher price.

2.12 Phased Implementation

For economic and technical reasons, each utility is likely to build-out its conversion on a different basis. For example, Comcast would be expected to convert its system on a node by node basis while FPL would be expected to do so on a feeder by feeder basis. A coordinated effort will be required to minimize the effects of the Town.

Minimizing construction related impacts and inconveniences to the local community can be accomplished, in part, by carefully coordinating the Utilities needs and scheduling the project in phases.

2.13 Damage to Foliage

The Town's weather encourages the fast, year long growth of numerous different types of foliage. Consequently, the roots of existing plants could become damaged during construction, thereby creating an unforeseen financial liability.

2.14 Joint Trenching

By using a common trench, the total cost of the proposed underground conversion could be reduced. However, Comcast and BellSouth have indicated that they may utilize different routes, especially for entrances to premises.

2.15 Construction Period

Ordinarily, utility related construction within Palm Beach is permitted only during part of the year. In order to expedite the project and meet expected schedules, the Utilities would benefit from being able to conduct construction throughout the year. Our understanding is that the Town has agreed to a year long construction schedule for this project.

2.16 Construction Permits

The Utilities may utilize contract and its own crews for this project. Ordinarily, there are limitations on the number of simultaneous vehicles that can work in the Town. Expeditiously completing this project may require a compromise in the number of allowed vehicles.

Section 3 ELECTRIC SYSTEM COST ESTIMATE

3.1 Electric System Cost Estimate

Current PSC and FPL tariffs (Section 6.3) include a stipulated formula for entities cost responsibilities for conversion of existing overhead electrical facilities to underground facilities. The tariff stipulates the cost of the electrical underground facilities will be based on the actual cost of installation with a 10% allowance for variation.

Current FPL regulations include a formula for an underground replacement project. The current formula is as follows:

CAIC = (UG + NBV + R) - (OH + SV)

- CAIC = Contribution in Aid Of Construction
- UG = Estimated cost to install the underground electric distribution facilities
- NBV = net book value (book value less accumulated depreciation)
- R = Removal cost of the overhead facilities
- OH = Estimated cost of a new overhead electrical distribution facility was being installed
- SV = Salvage value of the removed facilities

FPL provided a "Non binding" cost for the conversion of \$32,000,000. This estimate is the result of the above formula and FPL's estimate of the components above. In order to obtain a detailed design estimate, the Town must pay a fee based on the requested study area. In addition, in order to develop a cost estimate to compare to the FPL estimate, the following assumptions were utilized:

- Main feeder circuits will be designed for 600 Amp Capacity (1000 MCM Aluminum conductor)
- Route will consist of direct embedded duct bank
- Sectionalizing cabinets with junction points will be utilized at tap points
- "PME style" switchgear will be used at potential switching points. Estimated at two switchgear per mile
- Sectionalizing cabinets will be estimated every 500 feet
- Branch circuits will be based on 200 Amp capacity
- Pad-mounted style cabinets will be assumed for switchgear location

- Due to the nature of the island environment, the main feeder may require additional reinforcing to satisfy potential storm surge forces. The final design will need to identify the proper reinforcing.
- All single phase transformers were estimated at 50 KVA
- All three phase transformers were estimated at 150 KVA
- Street lighting will not be included in the estimate. This is a separate project being considered by the Town.
- Optional costs include conduits for telecommunication cables, but do not include relocation labor or other equipment needed to underground the cable and telephone facilities.
- Cost estimates do not include Right-of-Way or construction easement, permitting and/or acquisition costs.
- The location of the switchgear is assumed to be within the Right-of-Way of the road easement. FPL has recently agreed to utilize this space for facilities.
- Minor landscaping will be included for restoration; however disturbance of elaborate landscaping which is located within the Right-of-Way will require special attention.
- The conduit system will be installed by the Town of Palm Beach to facilitate one construction period and efficient use of space.
- Estimate assumes existing electrical services are underground and will not require additional service entrance work (i.e. panel and meter base work).
- Removal cost estimated at 15% of estimated construction cost.
- Overhead replacement costs estimated at \$200,000 per mile for three phase backbone system and \$100,000 for overhead three phase tap lines, and \$75,000 for overhead single phase lines.
- Estimates based on standard construction pricing.
- The breakdown provided by FPL did not differentiate between three phase and single phase tap lines. A 50/50 spilt was assumed.
- Salvage value was assumed to be equal to 50% of the replacement cost of the existing overhead transformers.

The derivation of the overhead replacement is outlined in Table 3-1:

Unit	Quantity	Unit Cost	Extended Cost
Three Phase backbone	26	\$200,000	\$ 5,200,000
Three Phase Tap	6.5	\$100,000	\$650,000
Single phase Tap	6.5	\$75,000	\$487,500
Transformers	800	\$ 2,000	\$1,600,000
Services	1700	\$1,000	\$1,700,000
Total	<u> </u>		\$ 9,637,500

 Table 3-1

 Estimated Replacement Cost of Overhead Electric Facilities

These assumptions along with information provided by FPL and current industry pricing components will allow the derivation of each of the elements in the CIAC formula. The estimated components are as follows:

Table 2.2

	Estimated Component								
CIAC	With Joint Trenching	Without Joint Trenching							
UG	\$52,470,134	\$53,928,311							
NBV	\$6,400,000	\$6,400,000							
R	\$1,445,625	\$1,445,625							
OH	\$9,637,500	\$9,637,500							
SV	\$800,000	\$800,000							
Total	\$49,878,259	\$51,336,436							

3.2 Storm-Hardened Overhead Construction Cost

The CIAC formula includes an overhead replacement cost factor (OH) that could be affected by a joint proposal filed on behalf of the Florida IOUs and currently under consideration by the Florida PSC. The purpose of this proposal is to mitigate the effects of severe storms on utility infrastructure and includes a provision to "storm-harden" overhead distribution facilities over and above those construction standards currently prescribed by National Electrical Safety Code (NESC). If the proposed construction guidelines are adopted, new distribution facilities would be designed to withstand extreme wind loading conditions up to 150 mph along some Florida coastal regions. The added costs associated with "storm-hardened" construction standards will be manifested primarily in the installation of higher ANSI-class poles. Typically, main feeders will require a heavy class concrete pole while overhead laterals will include wood poles with a much greater loading (moment) capacity than those installed under current standards.

To estimate the impact of the proposed "storm-hardening" standards on future distribution construction costs, an NESC extreme-wind weather case of 56.7 psf (150 mph) was applied to a typical main feeder structure meeting NESC Light Loading District Grade C construction standards. The analysis used a typical wind span of 175 feet, .556kcmil ACSR conductor, #4/0 AWG ACSR neutral, and two communications cables on a 45 foot Class 2 wood pole. Under the extreme wind conditions specified, a Class H3 wood-equivalent concrete pole was required to meet proposed "storm-hardened" design standards. Similar analysis was applied to typical three-phase and single-phase overhead laterals.

To arrive at an estimate for the added cost impact of "storm-hardened" construction standards, material and labor cost differentials for the heavier class poles were used, in addition to an allowance for the utilization of higher capacity guying and higher strength insulators on main feeders. As a result, the total estimated impact of these proposed construction standards on the CIAC overhead replacement cost component is an increase of 10-15 percent.

Section 4 BELLSOUTH COST ESTIMATE

4.1 Introduction

Estimating the cost of converting BellSouth's overhead telecommunications systems to underground has been pursued by verbally interviewing selected staff at BellSouth and utilizing R. W. Beck's existing data in similar matters. BellSouth's overhead system in the Town of Palm Beach is primarily comprised of main lines, laterals and service drops. At this point in time, BellSouth has not estimated the cost of converting its overhead facilities. The costs associated with converting each component are examined below.

The current Bellsouth Service tariff dated August 1 2006, addresses the requirements for requesting and executing a formal conversion study by Bellsouth.

It must noted that these costs are planning level estimates only and require further refinement before using for budgetary purposes.

4.2 BellSouth Cost Estimate – Main Lines

BellSouth verbally reported that its typical cost for converting overhead primary lines to underground is between \$121.21 per foot and \$132.66 per foot. It is R. W. Beck's opinion that while these unit costs appear to be high, they are suitable for the purposes of this study.

BellSouth does not currently have an estimate of the length of its total main line plant. However, an estimate can be derived by taking the total length of Ocean County or Lake Roads, since BellSouth's backbone system generally follows these roads. The length of these roads was measured from scaled maps that were provided by the Town of Palm Beach.

Based on these assumptions, the cost of converting BellSouth's main lines would be approximately \$2,395,000.

4.3 BellSouth Cost Estimate – Laterals

BellSouth verbally reported that its typical cost for converting overhead laterals to underground is between \$19.53 per foot and \$26.04 per foot (average cost is \$22.79 per foot). It is R. W. Beck's opinion that these costs are probably conservatively high, especially when accounting for the economies of scale that are available in converting a significant amount of the system at one time, but serve the objectives of this report.

Once again, BellSouth does not currently have an estimate of its total lateral overhead plant. Consequently, an estimate was derived by assessing the total length of all streets within Palm Beach that are served by overhead telephone systems. Based on these data, the total cost of laterals would be \$2,217,000.

4.4 BellSouth Cost Estimate – Service Drops

BellSouth verbally reported that its typical cost for converting overhead service drops to underground varies by type of customer. Reported cost estimates were \$250 for each residence and \$1,000 for each business, condominium and apartment building.

While BellSouth does not have an estimate of its total service drop plant or number of customers by class, an estimate was derived from the Town of Palm Beach's data bases. This source of information resulted in the following customer estimated class allocations:

- Residences: 2,455 (95% overhead)
- Apartment Buildings: 66 (10% overhead)
- Condominium Buildings: 116 (10% overhead)
- Businesses: 214 (90% overhead)

Based on the above assumed data and the previously derived underground service quantities, the total cost to convert all overhead service drops to underground would be roughly \$794,000.

4.5 BellSouth Cost Estimate – Summary

The above cost estimates assume that BellSouth would be pursing its underground conversion alone, without any coordination with other utilities. However, earlier in this report it was pointed out that significant cost savings could be captured by joint trenching. The following table summarizes BellSouth's conversion costs with and without joint trenching.

Conversion Cost								
Without Joint With Joint Trenching Trenching								
Main Line Plant	\$2,395,000	\$2,395,000						
Credit Joint Trenching	\$0	\$(540,635)						
Lateral Plant	\$2,217,000	\$2,217,000						
Service Drops	\$794,000	\$794,000						
Palm Beach Expenses	\$162,000	\$146,000						
Palm Beach PM	\$433,000	\$389,000						
Subtotal	\$6,001,000	\$5,400,000						

Table 4-1
BellSouth Conversion Cost Estimate Summary

Section 5 COMCAST COST ESTIMATE

5.1 Introduction

Estimating the cost of converting Comcast's overhead cable television (CATV) networks to underground has been pursued by verbally interviewing selected staff at Comcast and utilizing R. W. Beck's existing data in similar matters. Comcast's overhead system in the Town of Palm Beach is primarily comprised of hard and soft line plant. The costs associated with converting each component are examined below.

The Hard line plant for a cable system is analogous to a backbone or main line system. The Soft Line plant for a cable system is analogous to the service laterals for an electric system

It must noted that these costs are planning level estimates only and require further refinement before using for budgetary purposes.

5.2 Comcast Cost Estimate – Hard Line Plant

Verbal information provided by Comcast indicates that there is 37.21 miles of overhead hard line plant that costs roughly \$80,000 per mile (\$15.15 per foot) to convert to underground. These data assume that some boring would be required. This would result in a total hard line plant cost of \$2,976,800.

5.3 Comcast Cost Estimate – Joint Trenching Credits to Hard Line Plant

The above figure assumes that Comcast would not jointly trench its hard line plant with any other utility. However, if joint trenching were utilized, then conversations with Comcast indicate that a credit of roughly \$2.00 per foot could be realized. However, differences between system routes and requirements for each utility preclude the feasibility to assume that all of Comcast's hard line plant could be jointly trenched. For the purposes of this high-level analysis, it was assumed that 90% of Comcast's hard line plant, or 33.49 miles, could be jointly trenched.

Based on these assumptions, the potential joint trenching credit to the cost of Comcast's hard line plant is roughly \$354,000, causing the total hard line cost to be roughly \$2,623,000.

5.4 Comcast Cost Estimate – Soft Line Plant

The next step is to estimate the cost of converting Comcast's soft line plant by using its customer data noted in the preceding section and R. W. Beck's experience in related matters. Comcast indicated that the cost of converting a single residence, apartment building, condominium building or businesses would be roughly \$100 each. In addition, boring costs would be required to gain access beneath driveways and roads at a cost of \$7.00 per foot. Based on these assumptions, the cost of soft line plant conversion is summarized in the following table.

Table 5-1

Conversion Costs for Comcast's Soft Line Plant								
Market	Number	Total Cost						
Residential	2,455	\$456,000						
Apartments	66	\$24,000						
Condominiums	116	\$42,000						
Businesses	214	\$79,000						
Total	2,851	\$601,000						

The above table indicates that the cost of converting Comcast's overhead soft line plant to underground would be roughly \$601,000. This figure assumes that there no credits available from joint trenching since each utility might enter the customer's premise from the either the front or back lot line.

5.5 Comcast Cost Estimate – Summary

In summary, the cost to convert Comcast's existing overhead system to underground would be roughly \$3.9 million without joint trenching and \$3.5 million with a credit for joint trenching, as shown in the following table.

Conversion Cost								
Without Joint With Joint Trenching Trenching								
Hard Line Plant	\$2,976,800	\$2,976,800						
Soft Line Plant	\$601,000	\$601,000						
Joint Trench Credit	N/A	\$ (354,000)						
Subtotal	\$3,577,800	\$3,223,800						
Palm Beach Expenses	\$107,000	\$96,700						
Project Management	\$286,000	\$257,900						
Total	\$3,970,800	\$3,578,400						

Table 5-2
Comcast's Conversion Cost Estimate Summary

Appendix A ELECTRIC COST ESTIMATE

		Palm	В	each						
	Wit	h Joint	Т	renching	g					
ASSUMPTIONS FOR UNDERGROUND CONSTRU	JCTION:		1	. Cable is in r	lon	concrete encase	d conduit			
34320 1 PHASE - FEEDER LENGTH			2	2. Restoration	Co	sts are part of tro	enching or boring	un	iit.	
TRANSFORMERS			5	 No Cost has 	s be	ed included for	ROW clearing (1	his	should be minimal).	
	# OF							-		COST PER
BID UNIT DESCRIPTION	UNITS	UNIT		LABOR		MAT'L	UNIT PRICE		EXT. PRICE	FT
MAIN FEEDER - 3 PHASE PRIMARY										
3 PH'RISER ASSEMBLY CABLE, 1-1000 AL, AL CXN	137280	EA FEET	\$	<u>5 2,500.00</u> 5 10.00	\$	4,000.00	\$ 6,500.00 \$ 45.00	\$	- 6.177.600.00	
DIRECTIONAL BORING (POWER) 10% Avg.	13/200	FEET		, 10.00	-	55.00	\$ 49.50	\$	-	
DUCTBANK- 16-4" Concrete Encased DUCTBANK- 12-4" Concrete Encased		FEET FEET	\$	<u>6 45.00</u> 6 40.00	\$	75.00	\$ 120.00 \$ 105.00	\$	-	
DUCTBANK- 4-6" +2-2" Non Concrete Encased	137280	FEET	\$	§ 35.00	\$	45.00	\$ 80.00	\$	10,982,400.00	
PILINGS(One per 100 feet)	0	FEET	3	5 15.00 5 500.00	\$	500.00	\$ 30.00	\$	4,118,400.00	
SPLICES MISCELLANEOUS (Traffic, Vault Racks, Splices)	0	FEET	s	5.00	s	5.00	\$ 10.00	s	-	
TOTAL PRIMARY COST (Three Phase):							-	\$	21,278,400.00	
PRIMARY - THREE PHASE 200 Amp										
CABLE, 4/0, AL URD, EPR or XLP	34320	FEET	\$	\$ 3.00	\$	10.00	\$ 13.00 \$ -	\$	446,160.00	
DUCTBANK- 2-4" + 2-2" concrete Encased	34320	FEET	\$	\$ 25.00	\$	30.00	\$ 55.00	\$	1,887,600.00	
TRENCHING (Includes Conduits and Restoration)	0	FEET	3	5 15.00	\$	15.00	\$ 30.00	5	-	
MISCELLANEOUS (Traffic, Elbows, Vault Racks, Splices)	0	FEET	\$	\$ 2.50	\$	2.50	\$ 5.00	\$	- 2 333 760 00	
									2,555,700.00	
PRIMARY - SINGLE PHASE-200 Amp- CABLE, 1/0, AL URD, EPR or XLP	34320	FEET	\$	3.00	\$	3.00	\$ 6.00	\$	205,920.00	
DIRECTIONAL BORING (POWER)	0	FEET		25.00	e	20.00	\$ -	S	- 1 007 (00.00	
TRENCHING (Includes Conduits and Restoration)	0	FEET	3	5 <u>25.00</u> 5 <u>5.00</u>	\$	5.00	\$ 10.00	\$	- 1,687,000.00	
MISCELLANEOUS (Traffic, Elbows, Vault Racks, Splices) TOTAL PRIMARY COST (Single Phase):	0	FEET	5	\$ 2.50	\$	2.50	\$ 5.00	\$	2.093 520.00	
SECOND 4 DV			t						_,,020.00	
600V SECONDARY CABLE (4/0 AL)		FEET	\$	6 4.00	\$	2.00	\$ 6.00	\$	-	
DIRECTIONAL BORING (POWER) TRENCHING (Includes Conduits and Restoration.)	0	FEET	5	5.00	s	5.00	\$ - \$ 10.00	S	-	
TOTAL SECONDARY COST:	0	TEET	Ģ	5.00	\$	5.00	3 10.00	\$	-	
TRANSFORMERS								-		
150 KVA, 3 PH, LF, 120/208	100	EA	\$	500.00	\$	4,850.00	\$ 5,350.00	\$	535,000.00	
500 KVA, 3 PH, LF, 120/208 500 KVA, 3 PH, LF, 120/208		EA	3	500.00 500.00	\$	14,000.00	\$ 8,900.00 \$ 14,500.00	\$	-	
750 KVA, 3 PH, LF, 120/208		EA EA	\$	<u>500.00</u>	\$	21,000.00	\$ 21,500.00 \$ 23,500.00	S	-	
50 KVA, 1 PH, LF, 120/240	500	EA	\$	500.00	\$	1,500.00	\$ 2,000.00	\$	1,000,000.00	
100 KVA, 1 PH, LF, 120/240 CONCRETE PAD, 3PH TRANSFORMER	600	EA EA	\$	<u>500.00</u> 500.00	\$	2,200.00 500.00	\$ 2,700.00 \$ 1,000.00	\$	600,000.00	
CABLE WELL UNDER PADS	600	EA	\$	500.00	\$	1,000.00	\$ 1,500.00	S		
LOAD BREAK 200A ELBOWS	1600	EA	3	5 83.00 5 100.00	\$	50.00	\$ 150.00	\$	240,000.00	
TOTAL TRANSFORMER COST:								\$	1,909,000.00	
JUNCTIONS & SWITCHES	274.50	EA		1 500 00	¢	2 000 00	£ 4,500,00		1 225 520 00	
SECTIONALIZING JUNCTION (Inree phase 800 A) SECTIONALIZING JUNCTION (three phase 200A)	68.64	EA	3	5 1,500.00 5 500.00	\$	2,000.00	\$ 4,500.00 \$ 2,500.00	\$	1,235,520.00 171,600.00	
PME-6 with SMU 20 style fuses PME-9 with SMU 20 style fuses	52	EA FA	\$	<u>5 2,000.00</u> 5 2,000.00	\$	14,000.00	\$ 16,000.00 \$ 18,000.00	\$	- 936.000.00	
PME-11 with SMU 20 style fuses		EA	\$	5 2,000.00	\$	18,000.00	\$ 20,000.00	\$	-	
Large MANHOLES (Includes Excav., Backfill)	275	EA	8	5 500.00 5 3,000.00	\$	3,000.00	\$ 1,000.00 \$ 6,000.00	\$	1,650,000.00	
Small MANHOLES (Includes Excav., Backfill)	69 1222	EA	\$	5 2,000.00 100.00	\$	2,000.00	\$ 4,000.00 \$ 150.00	\$	274,560.00	
DEAD FRONT 200A ELBOWS DEAD FRONT 600A ELBOWS	2943	EA	\$	5 150.00 5 150.00	\$	200.00	\$ 350.00	\$	1,030,050.00	
Splices 600 Amp	0	EA EA	5	<u>5 235.00</u> 5 235.00	\$	160.00	\$ 395.00 \$ 395.00	\$	-	
TOTAL JUNCTION & SWITCH COST:								\$	5,482,680.00	
						SUBTOTA	L: EQUIPMENT	\$	33,097,360.00	
MISC COST Telecomm comunication Boxes		EA	s	\$ 250.00	s	250.00	\$ 500.00	S	-	
	0	FEET			Ť			\$	-	
Total misc Cost								3	-	
SERVICE ENTRANCE COSTS:										
TYPE 1 (Single Phase)	1500	EA	\$	5 1,000.00	\$	2,500.00	\$ 3,500.00	\$	5,250,000.00	
TYPE 2 (Three Phase) TOTAL SERVICE ENTRANCE COSTS	200	EA	3	5 1,000.00	\$	4,000.00	\$ 5,000.00	\$	6,250,000.00	
									, ,	
							SUBTOTAL:	\$	39,347,360.00	
CONTRACTOR MOBILIZATION					-		1%	s	393.473.60	
SUBTOTAL								\$	39,740,833.60	
CONTINGENCY							15%	\$	5,961,125.04	
SUBTOTAL								\$	45,701,958.64	_
ENGINEERING & DESIGN							7%	\$	3,199,137.10	
PROJECT MANAGEMENT OWNER'S OVERHEAD EXPENSE					-		8%	\$	3,656,156.69	
SUBTOTAL			t				578	\$	53,928,311.20	
ENVIRONMENTAL			+		-		0%	\$	-	\$ 266.33
SUBTOTAL			T				-	\$	53,928,311.20	
TOTAL FOR UNDERGROUND			1		L	171600	Footage	5	53,928,311.20	
TOTAL / FT			F					F		
			t					t		
			+		-			+		
			T					F		\$ 214.07
	L	1	1		L			1		φ 314.2/

		Palm	Be	each						
	Witho	out Joi	nt	Trenchi	ng					r
ASSUMPTIONS FOR UNDERGROUND CONSTRU 7829 3 PHASE - FEEDER LENGTH	JCTION:		1.	Cable is in r Restoration	non concrete enca Costs are part of	sed of	conduit hing or boring	unit	t.	
0 1 PHASE - FEEDER LENGTH			3.	No Cost has	beed included for	r RC	OW clearing (Th	nis sl	hould be minimal).	
TRANSFORMERS										
	# OF		-			+				COST PER
BID UNIT DESCRIPTION	UNITS	UNIT		LABOR	MAT'L		UNIT PRICE		EXT. PRICE	FT
MAIN FEEDER - 3 PHASE PRIMARY				2 500 00	C 4 000 0		6 500 00			
CABLE, 1-1000 AL , AI, CXN	137280	FEET	\$	2,500.00	\$ 4,000.00) \$	45.00	\$	6,177,600.00	
DIRECTIONAL BORING (POWER) 10% Avg. DUCTBANK- 8-6" Concrete Encased		FEET	\$ \$	100.00 45.00	\$ 20.00 \$ 75.00) \$	120.00	\$ \$	-	
DUCTBANK- 12-4" Concrete Encased	127280	FEET	S	40.00	\$ 65.00) \$	105.00	s	-	
TRENCHING (Includes Backfill, & Restoration)	137280	FEET	\$	15.00	\$ 15.00) \$	30.00	\$	4,118,400.00	
PILINGS(One per 100 feet) SPLICES	0	FEET	\$	500.00	\$ 500.00) \$	1,000.00	\$	-	
MISCELLANEOUS (Traffic, Vault Racks, Splices) TOTAL PRIMARY COST (Three Phase):	0	FEET	\$	5.00	\$ 5.00) \$	10.00	\$ \$	- 20,592,000.00	
DDIMADV THEFE PHASE 200 Amp						-				
CABLE, 4/0, AL URD, EPR or XLP	34320	FEET	\$	3.00	\$ 9.00) \$	12.00	\$	411,840.00	
DIRECTIONAL BORING (POWER) DUCTBANK- 2-4" concrete Encased	0 34320	FEET	\$	100.00 25.00	\$ 20.00 \$ 25.00) \$	120.00	\$	- 1,716,000.00	
TRENCHING (Includes Conduits and Restoration)	0	FEET	\$	15.00	\$ 15.00) \$	30.00	\$	-	
MISCELLANEOUS (Traffic, Elbows, Vault Racks, Splices)	0	FEET	\$	2.50	\$ 2.50) \$	5.00	\$	-	
						\pm		\$	2,127,840.00	
PRIMARY - SINGLE PHASE-200 Amp- CABLE, 1/0, AL URD, EPR or XLP	34320	FEET	\$	3.00	\$ 3.00) s	6.00	\$	205,920.00	
DIRECTIONAL BORING (POWER)	0	FEET	\$ ¢	100.00	\$ 20.00		120.00	\$ ¢	1 716 000 00	
TRENCHING (Includes Conduits and Restoration)	0	FEET	\$	5.00	\$ 25.00	$\frac{1}{3}$	10.00	\$		
MISCELLANEOUS (Traffic, Elbows, Vault Racks, Splices) TOTAL PRIMARY COST (Single Phase):	0	FEET	\$	2.50	\$ 2.50) \$	5.00	\$ \$	1,921,920.00	
SECONDARY						-				
600V SECONDARY CABLE (4/0 AL)		FEET	\$	4.00	\$ 2.00) \$	6.00	\$	-	
TRENCHING (Includes Conduits and Restoration)	0	FEET	\$	5.00	\$ 5.00) \$	- 10.00	\$		
TOTAL SECONDARY COST:			-			-		\$	-	
TRANSFORMERS	100	EA		500.00	£ 4.950.00		5 250 00	6	525 000 00	
300 KVA, 3 PH, LF, 120/208 300 KVA, 3 PH, LF, 120/208	100	EA	5	500.00	\$ 4,850.00) \$	8,900.00	\$	-	
500 KVA, 3 PH, LF, 120/208 750 KVA, 3 PH, LF, 120/208		EA EA	\$ \$	500.00	\$ 14,000.00 \$ 21,000.00) <u>s</u>) s	14,500.00 21,500.00	\$ \$	-	
1000 KVA, 3 PH, LF, 120/208	500	EA	s	500.00	\$ 23,000.00) \$	23,500.00	s	-	
100 KVA, 1 PH, LF, 120/240	500	EA	\$	500.00	\$ 2,200.00) \$	2,000.00	\$	-	
CONCRETE PAD, 3PH TRANSFORMER CABLE WELL UNDER PADS	600	EA EA	\$ \$	500.00	\$ 500.00 \$ 1,000.00) <u>s</u>) <u>s</u>	1,000.00 1,500.00	\$ \$	600,000.00	
GROUNDING, RODS & CABLE, 3 PH	600 1600	EA FA	\$	85.00	\$ 30.00) \$	115.00	\$	69,000.00	
TOTAL TRANSFORMER COST:	1000	LA	9	100.00	\$ 50.00	1	150.00	\$	1,909,000.00	
JUNCTIONS & SWITCHES						-				
SECTIONALIZING JUNCTION (Three phase 600 A) SECTIONALIZING JUNCTION (three phase 200A)	274.56 68.64	EA EA	\$ \$	1,500.00	\$ 3,000.00 \$ 2,000.00) \$	4,500.00	\$	1,235,520.00	
PME-6 with SMU 20 style fuses	52	EA	\$	2,000.00	\$ 14,000.00) \$	16,000.00	S	-	
PME-9 with SMU 20 style fuses PME-11 with SMU 20 style fuses	32	EA	\$	2,000.00	\$ 18,000.00) \$	20,000.00	\$	-	
PADS FOR ABOVE EQUIPMENT Large MANHOLES (Includes Excav., Backfill)	275	EA EA	\$ \$	500.00 3,000.00	\$ 500.00 \$ 3,000.00) \$	1,000.00 6,000.00	\$	- 1,650,000.00	
Small MANHOLES (Includes Excav., Backfill)	69 1233	EA EA	\$	2,000.00	\$ 2,000.00 \$ 50.00		4,000.00	\$	274,560.00	
DEAD FRONT 200A ELBOWS DEAD FRONT 600A ELBOWS	2943	EA	\$	150.00	\$ 200.00) \$	350.00	\$	1,030,050.00	
Splices 600 Amp	0	EA EA	\$	235.00	\$ 160.00 \$ 160.00) \$	395.00	\$		
TOTAL JUNCTION & SWITCH COST:			-			-		\$	5,482,680.00	
MISCOST					SUBTOT	AL:	EQUIPMENT	\$	32,033,440.00	
Telecomm comunication Boxes		EA	\$	250.00	\$ 250.00) \$	500.00	\$	-	
	0	FEET EA	-			\$	-	\$ \$	-	
Total misc Cost			_			-				
SERVICE ENTRANCE COSTS:	1500	EA		1 000 00	6 2 500 0		2 500 00	6	5 250 000 00	
TYPE 1 (Single Phase) TYPE 2 (Three Phase)	200	EA	\$	1,000.00	\$ 2,500.00) \$	5,000.00	\$	1,000,000.00	
TOTAL SERVICE ENTRANCE COSTS			-			+		\$	6,250,000.00	
						+	SUBTOTAL		28 282 440 00	
							SUBIUTAL:	3	38,283,440.00	
CONTRACTOR MOBILIZATION SUBTOTAL			-			+	1%	\$ \$	382,834.40 38,666,274.40	
						+	15%	\$	5 700 041 16	
SUBTOTAL							1570	\$	44,466,215.56	
ENGINEERING & DESIGN			+			+	7%	\$	3,112,635.09	
PROJECT MANAGEMENT OWNER'S OVERHEAD EXPENSE						-	8%	\$ \$	3,557,297.24	
SUBTOTAL			\vdash			+	570	\$	52,470,134.36	
ENVIRONMENTAL			+			+	0%	\$		\$ 5,679.68
SUBTOTAL			-			+		\$	52,470,134.36	
TOTAL FOR UNDERGROUND					7829	+	Footage	\$	52,470,134.36	
TOTAL / FT			+			+				
			-			+				
			F			+				
										\$6,702.02

Appendix B COMCAST COST ESTIMATE

Underground Conversion Cost Estimate: Comcast

Hard Line Plant: Comcast Sole Trench

	Length Cost per Foot Cost per Mile Subtotal Cost (Includes Boring and Conduit)	\$ \$	37.21 15.15 <u>80,000</u> 2,976,800	Miles Per Foot Per Mile
Hard Line P	lant: Comcast and FPL Joint Trench			
	Length Percent Feasible for Joint Trenching Trenching Cost Trenching Cost per Mile Trenching Cost	\$ \$ \$	37.21 90% 2.00 10,560 353,644	Miles Per Foot Per Mile
Soft Line PI	Cost without Joint Trenching Joint Trenching Credit Total Hard Line Plant Cost ant: Households	\$ \$ \$	2,976,800 (353,644) 2,623,156	
	Total Households Overhead Service CATV Penetration Rate CATV Penetration Rate Cost per Household Subtotal Cost - Low Subtotal Cost - High Subtotal Cost - Average	\$ \$ \$ \$ \$	2,455 95% 85% <u>100.00</u> 198,241 198,241 198,241	Units Low Estimate High Estimate Each
	Total Households Boring Cost Household Boring Length (Average Driveway) Households Requiring Boring (Front Access) Boring Cost for Households	\$	2,455 7.00 30.00 50% 257,775	Units Per Foot Feet
	Household Cost - Low Household Cost - High Household Cost - Average	ծ \$ \$	456,016 456,016 456,016	
Soft Line PI	ant: Apartment Buildings			
	Total Apartment Buildings Overhead Service CATV Penetration Rate CATV Penetration Rate Cost per Appartment Subtotal Cost - Low Subtotal Cost - High Subtotal Cost - Average	\$ \$ \$	66 10% 85% 85% 100.00 561 561 561	Buildings Low Estimate High Estimate Each
	Total Apartment Buildings Boring Cost Apartment Boring Length (Average Driveway) Apartments Requiring Boring (Front Access) Boring Cost for Apartments	\$	66 7.00 50.00 <u>100%</u> 23,100	Units Per Foot Feet
	Apartment Cost - Low Apartment Cost - High Apartment Cost - Average	\$ \$ \$	23,661 23,661 23,661	

Soft Line Plant: Condominiums

	Total Condominium Buildings	116 Buildings
	Overhead Service	10%
	CATV Penetration Rate	85% Low Estimate
	CATV Penetration Rate	85% High Estimate
	Cost per Appartment	\$ 100.00 Each
	Subtotal Cost - Low	\$ 986
	Subtotal Cost - High	\$ 986
	Subtotal Cost - Average	\$ 986
	Total Condominium Buildings	116 Units
	Boring Cost	\$ 7.00 Per Foot
	Condominium Boring Length (Average Driveway)	50.00 Feet
	Condominiums Requiring Boring (Front Access)	 100%
	Boring Cost for Condominiums	\$ 40,600
	Condominium Cost - Low	\$ 41,586
	Condominium Cost - High	\$ 41,586
	Condominium Cost - Average	\$ 41,586
Soft Line Pl	ant: Businesses	
	Total Businesses	214 Businesses
	Overhead Service	90%
	CATV Penetration Rate	10% Low Estimate
	CATV Penetration Rate	35% High Estimate
	Cost per Appartment	\$ <u>100.00</u> Each
	Subtotal Cost - Low	\$ 1,926
	Subtotal Cost - High	\$ 6,741
	Subtotal Cost - Average	\$ 4,334
	Total Businesses	214 Units
	Boring Cost	\$ 7.00 Per Foot
	Business Boring Length (Average Driveway)	50.00 Feet
	Businesses Requiring Boring (Front Access)	 100%
	Boring Cost for Businesses	\$ 74,900
	Business Cost - Low	\$ 76,826
	Business Cost - High	\$ 81,641
	Business Cost - Average	\$ 79,234

Total Comcast

	Without Joint			With Joint		
	Trenching			Trenching		
Hard Line Plant	\$	2,976,800	\$	2,976,800		
Credit for Joint Trenching	\$	-	\$	(353,644)		
Soft Line Plant (Residences)	\$	456,016	\$	456,016		
Soft Line Plant (Apartments)	\$	23,661	\$	23,661		
Soft Line Plant (Condominiums)	\$	41,586	\$	41,586		
Soft Line Plant (Businesses)	\$	79,234	\$	79,234		
Subtotal Comcast Conversion Cost	\$	3,577,297	\$	3,223,653		
Town of Palm Beach Labor		107,318.90		96,709.59		
Project Management		286,183.74		257,892.23		
Total Comcast Conversion Cost	\$	3,970,799	\$	3,578,255		

Appendix C BELLSOUTH COST ESTIMATE

Underground Conversion Cost Estimate: BellSouth

Sample Conversion Project: Lateral Underground							
	Lateral Length		220	Feet			
	Total Lateral Cost	\$	5,729.00				
	Cost per Foot (Lateral - High)	\$	26.04	Per Foot			
			0.5%				
	Potential Savings Due to Scale	^	25%				
	Cost per Foot (Lateral - Low)	\$	19.53	Per Foot			
Sample Cor	version Project: Main Underground						
	Lateral Length		440	Feet, Each			
	Number of Laterals		4				
	Unit Cost (Low)	\$	19.53				
	Unit Cost (High)	\$	26.04	.			
	Lateral Cost (Low)	¢	34,374.00	Total			
	Lateral Cost (Average)	\$	40.103.00	Total			
		Ŷ	10,100.00	. otai			
	Total Project Cost	\$	167,037.00				
	Less Lateral Cost (Low)	\$	(34,374.00)				
	Cost of Main (High)	\$	132,663.00				
	Length of Main	_	1,000.00	Feet			
	Main Line Unit Cost (High)	\$	132.66	Per Foot			
	Total Project Cost	\$	167 037 00				
	Less Lateral Cost (High)	\$	(45 832 00)				
	Cost of Main (Low)	\$	121,205.00	•			
	Length of Main		1,000.00	Feet			
	Main Line Unit Cost (Low)	\$	121.21	Per Foot			
	Cost of Main (Average)	\$	126.93	Per Foot			
Main Line A	nalysis						
	Total Length		94 358 97	Feet			
	Percent Overhead		20%	1001			
	Cost of Main (Average)	\$	126.93	Per Foot			
	Total Main Line Cost	\$	2,395,472.21				
Lateral Ana	lysis			•			
	Total Length		216,217.95	Feet			
	Half of Total Length		108,108.98	Feet			
	Percent Overhead	•	90%				
	Lateral Cost Per Unit (Low)	\$	19.53	Per Foot			
	Total Cost of Laterais (Low)	φ	1,900,296				
	Total Length		216.217.95	Feet			
	Half of Total Length		108,108.98	Feet			
	Percent Overhead		90%				
	Lateral Cost Per Unit (High)	\$	26.04	Per Foot			
	Total Cost of Laterals (High)	\$	2,533,730				
	Total Cost of Latorals (Avorago)	•	2 217 014				
	Total Oost of Laterals (Average)	Ψ	2,217,014	:			
Service Dro	ps						
	Number of Residences		2.455				
	Residences Receiving Overhead Service		95%				
	Cost to Convert Each Residence	\$	250.00	Each			
	Total Cost to Convert Residences	\$	583,062.50				
	Number of Rusinesses		214				
	Rusinesses Receiving Overhead Service		214				
	Cost to Convert Each Business	\$	1 000 00	Each			
	Total Cost to Convert Businesses	\$	192,600.00				
	Number of Condominiums		116				
	Condominiums Receiving Overhead Service		10%				
	Lost to Convert Each Condominium	\$	1,000.00	⊢ach			
		φ	11,000.00				
	Number of Apartment Buildinas		66				
	Apartment Buildings Receiving Overhead Service		10%				
	Cost to Convert Each Apartment Building	\$	1,000.00	Each			
	Total Cost to Convert Apartment Building	\$	6,600.00				
	Total Cost of Service Drope	¢	703 963 50				
	TOTAL COST OF SERVICE DIOPS	φ	193,002.30				
Total BellSo	buth						

	Trenching		Trenching		
Main Lines	\$	2,395,472.21	\$	2,395,472.21	
Credit for Joint Trenching	\$	-	\$	(540,634.88)	
Laterals	\$	2,217,014	\$	2,217,014.13	
Service Drops	\$	793,863	\$	793,862.50	
Subtotal BellSouth Conversion Cost	\$	5,406,348.84	\$	4,865,713.96	
Town of Palm Beach Labor	\$	162,190	\$	145,971	
Project Management	\$	432,508	\$	389,257	
Total BellSouth Conversion Cost	\$	6,001,047	\$	5,400,942	

With Joint

Without Joint